Formalism of quantum statistical mechanics#

(Also see Kardar 6.4 (Quantum microstates) and Kardar 6.5 (Quantum macrostates))

Thus far, we dove into quantum stat-mech using the replacement recepie

\[ Z=\sum_{n} e^{-\beta E_{n}}, \hat{H}\left|E_{n}\right\rangle=E_{n}\left|E_{n}\right\rangle \]

This is correct, but its worth developing the general formalism.

Classically, we have a distribution over microstates ” \(\mu\) “, \(p(\mu)\), with \(\langle O\rangle=\sum_{\mu} p(\mu) O(\mu)\)

The distribution \(p(\mu)\) depends on ensemble,

\[ p(\mu)=\frac{1}{\Omega} \delta(H(\mu)-E), \qquad p(\mu)=\frac{1}{z} e^{-\beta H(\mu)} \text {, etc. } \]

The quantum analog is the “density matrix”

\[\begin{split} \begin{aligned} & \hat{\rho}=\sum_{\alpha} p_{\alpha}|\alpha\rangle\langle\alpha|, \\ & \langle\hat{O}\rangle=\sum_{\alpha} p_{\alpha}\langle a|\hat{\theta}| \alpha\rangle \\ & \operatorname{Tr}(\hat{j})=1 \quad \sum_{\alpha} \rho_{\alpha}=1 \\ & =\operatorname{Tr}(\hat{\rho} \hat{O}) \end{aligned} \end{split}\]

The various eq. ensembles are then taken diagonal in \(\hat{H}\) :

\[\begin{split} \begin{aligned} & \left.\hat{\rho}_{E}=\frac{1}{\Omega} \sum_{n} \delta\left(E_{n}-E\right)\left|E_{n}\right\rangle<E_{n} \right\rvert\, \\ & \hat{\rho}_{\beta}=\frac{1}{Z} \sum_{n} e^{-\beta E_{n}}\left|E_{n}\right\rangle\left\langle E_{n}\right| \\ & \hat{\rho}_{\beta, \mu}=\frac{1}{Q} \sum_{n} e^{-\beta\left(E_{n}-\mu N_{n}\right)}\left|E_{n}\right\rangle\left\langle E_{n}\right) \\ & \quad \tau \quad[\hat{H}, \hat{N}]=0 \end{aligned} \end{split}\]

N-conserved

QH analog of a distribution over mierostates is the “density matrix”:

Consider a system being in QH micratate \(\left|\psi_{\alpha}\right\rangle\) with probability \(p_{\alpha}\). This can be summarized by the density matrix

\[ \hat{\rho} \equiv \sum_{\alpha} \rho_{\alpha}\left|p_{\alpha}\right\rangle\left\langle\psi_{\alpha}\right|, \quad \sum \rho_{\alpha}=1=\operatorname{Tr} (\hat{\rho}) \]

Expectation value

\[ \begin{aligned} & \langle\hat{O}\rangle_{\hat{\rho}}=\sum_{\alpha} p_{\alpha}\left\langle\psi_{\alpha}|\hat{O}| \psi_{\alpha}\right\rangle \stackrel{(*)}{=} \operatorname{Tr}(\hat{O} \hat{\rho}) \end{aligned} \]

To see (*), note that

\[ \operatorname{Tr}(\hat{O} \hat{\rho})=\sum_{\alpha_{1}}\langle\alpha|\hat{O} \hat{\rho}| \alpha)=\sum_{\alpha \beta}\langle\alpha|\hat{O}| \beta\rangle \underbrace{\langle\beta|\hat{\rho}| \alpha\rangle}_{=p_{\alpha}\delta_{\alpha, \beta}} =\sum_{\alpha} p_{\alpha}\langle\alpha|\hat{O}| \alpha\rangle \]

\(\hat{\rho}\) can be expanded in any orthogonal basis

\[ \hat{\rho}=\sum_{i, j} \rho_{i, j}|i\rangle\langle j| \;, \qquad \rho_{i j}=\langle i|\hat{\rho}| j\rangle \]

Note that not all \(\rho_{i j}\) are valid density matrices. Requirements:

(1) \(\operatorname{Tr}(\hat{\rho})=1\)

(2) \(\hat{\rho}^{+}=\sum_{\alpha} p_{\alpha}^{*}\left(\left|\psi_{\alpha}\right\rangle\left\langle\psi_{\alpha}\right|\right)^{*}=\hat{\rho} \). (Hermitian)

(3) For any \(|v\rangle\),

\[\begin{split} \begin{gathered} \langle v|\hat{\rho}| v\rangle=\sum_{\alpha} p_{\alpha}\left\langle v \mid \psi_{\alpha}\right\rangle\left\langle\psi_{\alpha} \mid v\right\rangle \\ =\sum_{\alpha} p_{\alpha}\left|\left\langle v \mid \psi_{\alpha}\right\rangle\right|^{2} \geqslant 0 \end{gathered} \end{split}\]

I.e. \(\hat{\rho}\) is “positive semi-definite”

In a general basis, the density matrix typically has the following structure:

By positive semi-definiteness and the definition of the d.m.s., we have

\[ 0 \leq \rho_{i i} \leq 1, \sum \rho_{i i}=1 . \]

So the “populations”look like probabilities. However, this is basis dependent!

For example, for a single spin, we can convert matrix from the up-down basis to the left- right basis, we obtain

\[\begin{split} \frac{1}{2}\left[\begin{array}{ll} |\uparrow\rangle & |\downarrow\rangle \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array}\right] \leftrightarrow\left[\begin{array}{cc} |\rightarrow\rangle & |\leftarrow\rangle \\ 1 & 0 \\ c & 0 \end{array}\right] \end{split}\]

There is always a special basis in which coherence part vanishes, e.g.

\[ \hat{\rho}=\operatorname{diag}\left(p_{i}\right) . \]

We will mostly assume that this basis is time -independent, so we can heuristically work with population \(p_{i}\).

\[ \operatorname{Tr}[A, B]=A_{i j} B_{j i}-B_{i j} \cdot A_{j i}=0 \text {. finite ! } \quad \mid \quad \underbrace{}_{-i \hbar}\langle\psi|=\langle\psi| \hat{H} \]

Dynamics:#

Exercise: Show that the Schrödinger equation

\[i\hbar \partial_{t}|\varphi\rangle=\hat{H}|\psi\rangle\]

implies the von Neumann equation

\[i \hbar \partial_{t} \hat{\rho}=[\hat{H}, \hat{\rho}]\]

So

\[ i\hbar \partial_{t} \sum_{i} \rho_{i, i}=i \hbar \partial_{t}(\operatorname{Tr}(\hat{\rho}))=\operatorname{Tr}([\hat{H}, \hat{\rho}])=0 \text {. } \]

(since \(\operatorname{Tr}([A, B])=0\) )

Thus, \(\operatorname{Tr}(\hat{\rho})=1\) is respected under unitarian time evolution.

For time-independent Hamiltonian, we have \(\psi(t)=\hat{U}(t) \psi(0)\) with \( \hat{U}=e^{-i \hat{H} t(\hbar} \) and so

\[ \hat{\rho}(t)=\hat{U}(t) \hat{\rho}_{0} \hat{U}^{+} (t) \]

( For a unitarian evolution in a open systan, one obtaines the so-called Lindblad quation which has aspects of a Masters equation)

Density matrices in equilbrium.#

The various equilibrium ensembles are then taken to be diagonal in the \(\hat{H}\) basis:

\[\begin{split} \begin{aligned} & \hat{\rho}_{E}=\frac{1}{\Omega} \sum_{n} \delta\left(E_{n}-E\right)\left|E_{n}\right\rangle\left\langle E_{n}\right| \\ & \hat{\rho}_{\beta}=\frac{1}{Z} \sum_{n} e^{-\beta E_{n}}\left|E_{n}\right\rangle\left\langle E_{n}\right| \\ & \hat{\rho}_{\beta, \mu}=\frac{1}{Q} \sum_{n} e^{-\beta\left(E_{n}-\mu N_{n}\right)} \left|E_{n}\right\rangle\left\langle E_{n}\right\rangle \end{aligned} \end{split}\]

(Note that \([\hat{H}, \hat{N}]=0\)). The density matrices can be conveniently summarized as operator expressions, eg.

\[ \hat{\rho}_{\beta}=\frac{1}{Z} e^{-\beta \hat{H}}, \quad Z=\operatorname{Tr}\left(e^{-\beta \hat{H}}\right) \]

This points to an interesting observation: with

\[ \beta=\frac{1}{K_{B} T} \rightarrow i t / A, \quad e^{-\beta \hat{H}} \rightarrow e^{-i t \hat{H} / h}=\text { Time Evolution! } \]

Thus the thermal density matrix is formally equivalent to “imaginary time evolution”,

\[ \hat{\rho}_{\beta}=\frac{1}{Z} \hat{U}(t=-i \beta) \]

This mathematical coincidence (??) gives rise to a number of technical tricks (Wick rotation | Euclidean path integral) important to quantum field and many body theory.

For an ensemble like \(\hat{H}-\mu \hat{N}\), where \([\hat{H}, \hat{N}]=0\), it is easy to show that

\[\begin{split} \begin{aligned} & \langle E\rangle=\langle\hat{H}\rangle=\frac{1}{Z} \partial_{(-\beta)} \operatorname{Tr}\left(e^{-\beta \hat{H}}\right) \\ & =\frac{1}{Z} \partial_{-\beta} Z=-\partial_{\beta} \ln (Z) \end{aligned} \end{split}\]

Note that \(Z\) is just a number (as in classical stat mech) in contrast to \(\hat{H}\) and \(\hat{\rho}\).

So, fortunately, all our thermo results like \(F=-\frac{1}{\beta} \ln (Z), \mu=-\frac{\partial F}{\partial N}\), etc and Maxwell’s relations / thermodynamic inequalities are unchanged by quantum effects. It’s just harder to compute \(Z\) because we need eigenspectrom \(\hat{H} \longrightarrow E_{n}\), which is itself hard!

The Many-Body Hilbert space#

The sum \(\sum_{n} e^{-\beta E_{n}}\left|E_{n}\right\rangle\left\langle E_{n}\right|\) runs over the Hilbert space \(\left|E_{n}\right\rangle \in \mathcal{H}\), so its worth understanding the structure of \(\mathcal{H}\) in a many-body system. 3 common cases:

(1) Spins / quits \(|\uparrow \uparrow \downarrow \uparrow \cdots\rangle\)

(2) Bosons \(\left.\psi\left(x_{1}, x_{2}\right)=\psi\left(x_{2}, x_{1}\right)\right\}\) 1st/2nd

(3) Fermions \(\left.\psi\left(x_{1}, x_{2}\right)=-\psi\left(x_{2}, x_{1}\right)\right\}\) quantization

We start with (1) amd some rudiments of quantum information- (2, 3) are covered in future lectures.

Spins 1 “qu-dits”#

The Hilbert space of \(s=1 / 2\) spin is

\[\begin{split} \begin{aligned} & H=\operatorname{span}\left(\{|\uparrow\rangle,|\downarrow\rangle \})=\mathbb{C}^{2}\right. \\ & |\psi\rangle=\psi_{\tau}|\lambda\rangle+\psi_{+}|\downarrow\rangle-\left(\begin{array}{l} \psi_{\uparrow} \\ \psi_{\downarrow} \end{array}\right) \end{aligned} \end{split}\]

In quant-info, call it “qubit”, \(\{|0\rangle,|1\rangle\}\)

Operators spanned by \(2 \times 2\) Paulies \(\sigma^{x / y / z}\), often denoted \(X, Y, Z\) in quant-info.

For spin S,

\[\begin{split} \begin{aligned} \mathcal{H}= & \operatorname{span}\left(\{|m\rangle \}\right)=\mathbb{C}^{2 S+1} \\ & -S \leq m \leq S \end{aligned} \end{split}\]

or “qudit”, \(d=2s+1\).

What about 2 spins?#

Now,

\[\begin{split}H^{(2)}=\operatorname{span}(\{|\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle,|\downarrow \downarrow\rangle\})\\ =\mathbb{C}^{2} \otimes \mathbb{C}^{2}=\mathbb{C}^{2*2=4} \end{split}\]

The 2-spin \(\mathcal{H}^{(2)}=\mathcal{H}^{(1)} \otimes \mathcal{H}^{(1)}\) is a “tensor product”,

\[\begin{split} |\psi\rangle=\sum_{\sigma_{1}, \sigma_{2}=\tau / \downarrow} \psi_{\sigma_{1}} \sigma_{2}\left|\sigma_{1} \sigma_{2}\right\rangle=\left(\begin{array}{l} \psi_{\uparrow \pi} \\ \psi_{\tau \downarrow} \\ \psi_{\downarrow \pi} \\ \psi_{\downarrow \downarrow} \end{array}\right) \end{split}\]

We can extend to \(N\)-spins:

\[\begin{split} \begin{aligned} \mathcal{H}^{(N)} & =3 \operatorname{span}\left(\left\{| \sigma_{1}, \sigma_{2}, \cdots, \sigma_{N}>\right\}\right) \\ & =\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \cdots \\ & =\mathbb{C}^{2^{N}} \end{aligned} \end{split}\]

Key: dimension of \(\mathcal{H}^{(N)}=2^{N}\), NOT \(2 * N\)

So to encode a generic microstate

\[ |\psi\rangle=\sum_{\sigma_{1}, \sigma_{2} \ldots \sigma_{N}} \psi_{\sigma_{1}, \sigma_{2},\cdots} \mid\left\{\sigma\}\right\rangle \]

we need \(2^{N}\) complex numbers \(\psi_{\{\sigma\}}\)

Exponentially large in N!!

In contrast, a microstate of the classical Ising model, \(\mu=\sigma_{1} \sigma_{2} \cdots \sigma_{N}\), requires \(N\) classical bits. So your Monte-Carlo simulation of \(20 \times 20=400\) spins needed \(<1\) K B RAM. If we store quantum \(\psi_{\{\sigma\}}\) using 128-bit precision floating point, need

\[\begin{split} \begin{aligned} 128 \cdot 2^{400} & =3 \cdot 10^{122} \mathrm{bits} \\ & =3 \cdot 10^{112} \mathrm{~GB} \end{aligned} \end{split}\]

So… simulating quantum w/ classical hard!

Many body operators#

The tensor product structure also extends to operators:

\[\begin{split} \begin{array}{r} \hat{Z}_{i}\left|\sigma_{1}, \sigma_{2}, \cdots \sigma_{N}\right\rangle \equiv \sigma_{i}\left|\sigma_{1}, \cdots \sigma_{N}\right\rangle \\ \left(\hat{Z}_{i} \cdot \hat{Z}_{j}\right)\left|\sigma_{1}, \cdots, \sigma_{N}\right\rangle \equiv \sigma_{i} \cdot \sigma_{j}\left|\sigma_{1}, \cdots, \sigma_{N}\right\rangle \end{array} \end{split}\]

Since \(\hat{X}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\), with notation \(\sigma\in\{1 ,-1\}\),

\[\begin{split} \begin{aligned} & \hat{X}|\sigma\rangle=|-\sigma\rangle \quad \text{("Bitflip")} \\ & \hat{X}_{1}\left|\sigma_{1}, \sigma_{2}, \cdots \sigma_{N}\right\rangle=\left|-\sigma_{1}, \sigma_{2}, \cdots\right\rangle \end{aligned} \end{split}\]

The \(\hat{Z}_{i}, \hat{X}_{i}\) are \(2^{N} \times 2^{N}\) matrices:

Ex: for \(N=2, \quad\) Hilbert space\(=\{|1,1\rangle, \mid 1,-1\rangle,|-1,1\rangle,|-1,-1\rangle\}\)

\[\begin{split} \begin{array}{ll} \hat{Z}_{1}=\left[\begin{array}{llll} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right] & \hat{Z}_{2}=\left[\begin{array}{llll} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right] \\ \\ \hat{X}_{1}=\left[\begin{array}{llll} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right] & \hat{X}_{2}=\left[\begin{array}{llll} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right] \end{array} \end{split}\]

Generic \(2^{N} \times 2^{N}\) operators can be built up by adding / multiplying \(\hat{Z}_{i}, \hat{X}_{i}\).

Ex: Transverse - Field Ising model

\[\begin{split} \begin{aligned} & \hat{H}_{T F I} \sum_{i=1}^{N}\left[-J \hat{Z}_{i} \cdot \hat{Z}_{i+1}-g \hat{X}_{i}\right] \\ & \hat{m}=\frac{1}{N} \sum_{i} \hat{Z}_{i} \quad \text { (magnetization) } \end{aligned} \end{split}\]

Typical question:

Given \(\hat{\rho}_{\beta}=e^{-\beta \hat{H} T F I} / Z\), what’s \(\operatorname{Tr}\left(\hat{m} \hat{\rho}_{\beta}\right)\) ?

Not easy, because to obtain \(\hat{\rho}_\beta\) we need to diagonalize \(2^{N} \times 2^{N}\) matrix \(\hat{H}_{T F I}\) ! The biggest computations of this form can handle \(N \sim 20\) or so (see discussions of “quantum supremacy”)

Reduced Density matrices / Entanglement#

In classical probability theory, a distribution over two random variables, \(\mu=\{\mu_{1}, \mu_{2}\}, \quad p\left(\mu_{1}, \mu_{2}\right)\), allows us to define a marginal distribution over one:

\[ p_{1}\left(\mu_{1}\right) \equiv \sum_{\mu_{2}} p\left(\mu_{1}, \mu_{2}\right) \]

If we only care about observables \(O_{1}\left(\mu_{1}\right) \quad\left(\right.\) rather than \(\left.O\left(\mu_{1}, \mu_{2}\right)\right)\)

\[\begin{split} \begin{aligned} \left\langle O_{1}\right\rangle & =\sum_{\mu_{1}, \mu_{2}} O_{1}\left(\mu_{1}\right) p\left(\mu_{1}, \mu_{2}\right) \\ & =\sum_{\mu_{1}} O_{1}\left(\mu_{1}\right) p\left(\mu_{1}\right) \end{aligned} \end{split}\]

So, the marginal \(p_{1}\) is sufficient to recover \(\left\langle O_{1}\right\rangle\). Note that, in general,

\[ \rho\left(\mu_{1}, \mu_{2}\right) \neq \rho_{1}\left(\mu_{1}\right) \cdot \rho_{2}\left(\mu_{2}\right) \]

For example,

\[ \rho(\{\sigma \})=\frac{1}{Z} e^{-\beta \sum_{i} \sigma_{i} \cdot \sigma_{i+1}} \]

does not factorize.

In contrast, for

\[\begin{split} \rho(\sigma)=\frac{1}{Z} e^{-\beta \sum_{i} h \sigma_{i}}\\ =\frac{1}{Z} \prod_{i} e^{-\beta h \sigma_{i}} \\ =\rho_{1}\left(\sigma_{1}\right) \rho_{2}\left(\sigma_{2}\right) \ldots \end{split}\]

\(p\left(\mu_{1}, \mu_{2}\right) \neq p_{1}\left(\mu_{1}\right) \cdot p_{2}\left(\mu_{2}\right)\) implies \(\mu_{1}, \mu_{2}\) are “correlated”, and \(\left\langle O_{1} O_{2}\right\rangle \neq\left\langle O_{1}\right\rangle\left\langle O_{2}\right\rangle\).

For a quantum system on \(\mathcal{H}=\mathcal{H}_{1} \bigotimes\mathcal{H}_{2}\), there is an equivalent notion of marginal: the “Reduced Density Matrix”

Let \(\operatorname{span}\left\{\left|i_{1}\right\rangle\right\}=H_{1}=\mathbb{C}^{D_{1}}\), \(i_{1} =1, \cdots, D_{1}\) and \(\operatorname{span}\left(\left\{\left|i_{2}\right\rangle\right\}\right)=H_{2}=\mathbb{C}^{D_{2}}\), \(i_{2} =1, \cdots, D_{2}\)

Then \(\quad \mathcal{H}=\operatorname{span}\left(\left\{\left|i_{1}, i_{2}\right\rangle\right\}\right)=\mathbb{C}^{D_{1} \cdot D_{2}}\)

A generic state is

\[\begin{split} |\psi\rangle=\sum_{i_{1}, i_{2}} \psi_{i_{1}, i_{2}}\left|i_{1}, i_{2}\right\rangle \\ \hat{\rho}=\sum \rho_{\alpha} |\psi_{\alpha}\rangle\langle\psi_{\alpha}|=\sum \rho_{i_{1}, i_{2} ; j_{1}, j_{2}}| i_{1}, i_{2}\rangle\langle j_{1}, j_{2}| \end{split}\]

Consider an observable \(\hat{O}=\hat{O} \otimes \hat{\mathbb{I}}\), which only makes a measurement on subsystem ,’

\[ \hat{O}_{1}=\sum_{i_{1}, i_{2}, j_{1}} \hat{O}_{i_{1}, j_1}\left|i_{1}, i_{2}\right\rangle \left\langle j_{1}, i_{2}\right| \]

For example, if we have 2 spins, \(\mathcal{H}=\mathbb{C}^{2} \otimes C^{2}\), we might physically separate them to different regions of the lab, and then use Stern-Gerlach to measure only \(\operatorname{spin} 1: \hat{G}=\hat{Z}_{1} \otimes \hat{\mathbb{1}}_{2}\)

We have

\[\begin{split} \left\langle\hat{O}\right\rangle=\operatorname{Tr}\left(\hat{O} \hat{\rho}\right)\\ =\sum O_{i_{1}, j_{1}}\left\langle j_{1}, i_{2}|\hat{\rho}| i_{1}, i_{2}\right\rangle \\ =\sum_{i_{1}, i_{2}, j_{1}} O_{i_{1}, j_{1}} \rho_{j_{1}, i_{2} ; i_{1}, i_{2}} \end{split}\]

If we define the \(D_{1} \times D_{1}\) matrix

\[ \rho_{j_{1} ; i_{1}}^{(1)}\equiv\sum_{i_{2}} \rho_{j, i_{2} ; i_{1}, i_{2}} \]

and the corresponding operator

\[ \hat{\rho}^{(1)}=\sum \rho_{i_{1}, j,}^{(1)}\left|i_{1}\right\rangle\left\langle j_{1}\right| \]

we obtain

\[ \left\langle\hat{O}_{1}\right\rangle=\operatorname{Tr}\left(\hat{O}_{1} \hat{\rho}^{(1)}\right) \]

So, the “partial trace” \(\hat{\rho}^{(1)}=\operatorname{Tr}_{2}(\hat{\rho})\) is the quantum analog of marginal; called “reduced density matrix” for subsystem 1.

Ex: EPR state \(|E P R\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle)\)

\[\begin{split} \begin{aligned} \hat{\rho} & =|E P R\rangle\langle E P R| \quad \text { "Pure state" } \\ & =\frac{1}{2}(|\uparrow \downarrow \rangle+|\downarrow \uparrow\rangle)(|\uparrow \downarrow \rangle+|\downarrow \uparrow\rangle) \\ & =\frac{1}{2}\left[\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right] \end{aligned} \end{split}\]

So

\[\begin{split} \\ \hat{\rho}_{1} & =\left[\begin{array}{cc} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{array}\right] \end{split}\]

Note \(\hat{\rho}_{1}\) is mixed even though \(\hat{\rho}\) is pure! So

\[ \left\langle X_{1}\right\rangle=\left\langle Y_{1}\right\rangle=\left\langle Z_{1}\right\rangle=0 \]

even though \(\left\langle Z_{1} Z_{2}\right\rangle=-1\).

The two EPR spins are correlated even though the system (as a whole) is in a definite (pure) state.

Entropy:#

\[\quad S=-\operatorname{Tr}(\hat{\rho} \ln (\hat{\rho}))\]

For \(\hat{\rho}=\sum p_{\alpha}|\alpha\rangle\langle\alpha|, \quad\langle\alpha \mid \beta\rangle=\delta_{\alpha \beta}\).

\[ S=-\sum_\alpha p_{\alpha} \ln p_{\alpha} \]

We call a state \(\hat{\rho}\) “pure” if

\[ S[\hat{\rho}]=0 \Longleftrightarrow \hat{\rho}=|\psi\rangle\langle\psi| \]

Otherwise, \(\quad S[\hat{\rho}]>0 \Rightarrow \hat{\rho}\) “mixed

Entanglement:#

Let \(\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}\), and \(\quad|\psi\rangle \in \mathcal{H}\).

Clearly, \(\hat{\rho}=|\psi\rangle\langle\psi|\) has \(S[\hat{\rho}]=0\).

However, the RDM \(\hat{\rho}_{1}=\operatorname{Tr}_{2}(\hat{\rho})\) can be mixed. We call \(S\left[\hat{\rho}_{1}\right]\) the “entanglement entropy”.

Even though, the system is in a single fixed pure state \(|\psi\rangle\), measurements between \(1\) and \(2\) are correlated:

\[ \left\langle O_{1} O_{2}\right\rangle \neq\left\langle O_{1}\right\rangle\left\langle O_{2}\right\rangle \]

Our earlier example was \(|\psi\rangle=|E P R\rangle\), where \(\hat{\rho}_{1}=\text{diag}\left[\begin{array}{ll}1 / 2 & 1 / 2\end{array}\right] \rightarrow S=\ln (2)\) : one bit of entanglement.

Note

Check out recent colloquium by Matthew Fisher on phase transitions in entanglement entropy.

Measures of quantum information#

Many but not all results of classical information theory transfer to the quantum case.

For \(\quad H_{A} \otimes \mathcal{H}_{B}=\mathcal{H}_{A B}, \quad \hat{\rho}_{A}=\operatorname{Tr}_{B}\left(\hat{\rho}_{A B}\right)\), one defines the “mutual information”, which is a measure of total correlation

\[ I(A: B)=S\left[\hat{\rho}_{A}\right]+S\left[\hat{\rho}_{B}\right]-S\left[\hat{\rho}_{A B}\right] \geq 0 \]
\[ I(A: B)=0 \quad \Longleftrightarrow \hat{\rho}_{A B}=\hat{\rho}_{a} \otimes \hat{\rho}_{B} \]

Important property:

\[\begin{split} \begin{aligned} & I(A: B C) \geq I(A: B) \\ & I(A: B C)-I(A: B)=S_{A}+S_{B C}-S_{A B C} \\ & -S_{A}-S_{B}+S_{A B} \\ & =S A B+S_{B C}-S_{A B C}-S_{B} \geq 0 \end{aligned} \end{split}\]

Strong subadditivity of quantum information” - not easy to prove.