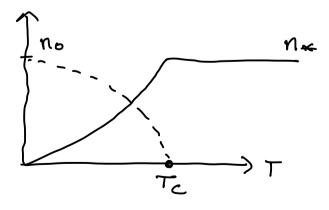
Degenerate Bose-Gas
For bosons,
$$n_{\kappa} = \frac{1}{e^{B(E\kappa_{\tau}\nu)} - 1}$$
.
At T=0, all bosons will pile into
min(E\kappa) $\rightarrow \kappa = 0$. So (F=E-TS)
(T=0) $n_0 = N$
 $n_{\kappa} = 0$ (K≠0)
This is a trivial example of "Bose-
Einstein" condensate all particles in single
quantum state! Does it survive to T>0?
Writing $N = n_0 + n^*$, $n^* = \sum_{\kappa \neq 0} n_{\kappa}$, $B = G$.
if lim n_0/v = finite at fixed N/v (or ν)
Remarkably, in 3D this occurs at finite Tc



To proceed, first note we can
assume
$$N \leq \min(\epsilon_{K})$$
, otherwise
 $NB(\epsilon_{K-N})$ becomes non-sensical
(a more physical understanding will come
from looking at limit $N \rightarrow \min(\epsilon_{K}) - 0^{\dagger}$:
the particle # $N \rightarrow \infty$ at fixed V, T .

To start, assume
$$N < \min(\epsilon_k) = 0$$

with $\epsilon_k = \frac{h^2 k^2}{2m}$ in $D=3$
 $\frac{N}{V} = \int \frac{d^3 k}{(2\pi)^3} \frac{1}{Z'e^{\beta\epsilon_k} - 1} \qquad Z = e^{\beta_k N}$

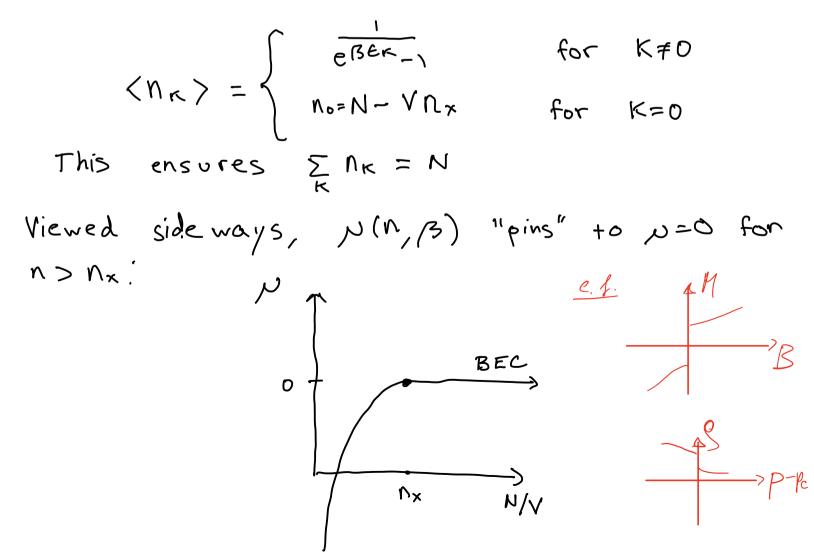
Now let
$$K = \sqrt{2m/\beta}/4 x'^2 = \frac{2}{2} \sqrt{\pi} x'^2$$

 $\beta \epsilon_{k} = x$
 $dK = \frac{\sqrt{\pi}}{2} x^{-1/2} dx$
 $n = 4\pi \int \frac{dk k^2}{(2\pi)^3} \frac{1}{z'e^{x} - 1} = \frac{1}{2^3} \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \frac{x'^2 dx}{z'e^{x} - 1}$
 $v_{olume element}$
 $dik magning or angles +/-
Defining $f_m(z) = \frac{1}{17(m)} \int_{0}^{\infty} \frac{x}{z'e^{x} - 1} dx$
 $\frac{1}{16/2} = \frac{\sqrt{\pi}}{2}$
 $\frac{1}{2} \int_{0}^{\infty} x^m e^{-X}$
 $\frac{1}{16/2} = \frac{\sqrt{\pi}}{2}$
 $\frac{1}{2} \int_{0}^{3} n = f_{3/2}^{+}(z) \int_{1}^{\infty} \frac{2}{\sqrt{\pi}}$
 $\frac{2}{\sqrt{\pi}}$
 $(\frac{3}{2} - 1)!$
This gives $\beta(w, \beta) \mapsto \psi(n, \beta)$$

For
$$\mu < 0 \implies 0 = 2 = 1$$
,
 $\lambda n^3 = \frac{1}{\binom{1}{2} - 1!} \int_{0}^{\infty} \frac{dx \times \sqrt{2}}{2^{-1}e^x - 1}$ is
finite because it is regular at $X \rightarrow 0$ and
decays as $e^{-x} \times \sqrt{2}$. Right at $Z = 1 - 0^{-1}$,
 $\lambda n_x^3 = \frac{2M^{-1}}{\binom{3}{2} - 1!} \int_{0}^{\infty} \frac{dx \times \sqrt{2}}{e^x - 1} \equiv \int_{0}^{3} \frac{dx \times \sqrt{2}}{(1 + \chi \cdot \cdot)^{-1}} = \int_{0}^{3} \frac{dx \times \sqrt{2}}{4x \times \sqrt{2}}$
This is finite since $\int_{0}^{\infty} \frac{dx \times \sqrt{2}}{(1 + \chi \cdot \cdot)^{-1}} = \int_{0}^{3} \frac{dx \times \sqrt{2}}{x^{-1}}$
 $n\lambda^3$
2.612
The grand-canonical formalism then
breaks down for $\mu > 0$ (in reality, interaction
between particle lead to μ -behaviour which
well-defined for all μ)

But physically, we can certainly put n > nx bosons into the box!

The interpretation is that for $n > N_{K}$, we need to switch to the canonical ensemble. When N=0, adding/removing a boson from K=0 state has no impact on $F=E-TS = F_0 + F_{K>0}$. This is because $F_{K=0} = 0$, and $S_{K=0} = 0^2$ because only one quantum state interspective of N_0 ! So to minimize F at fixed (N), we can adjust no as needed!

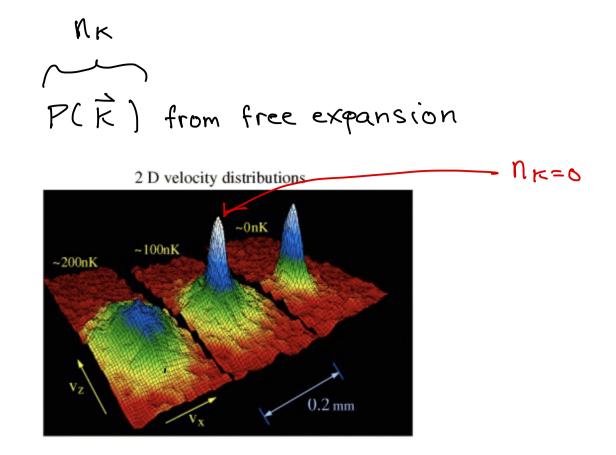


This kink implies non-analytic behaviour
in quantities like Cv, e.g., it is a
phase transition. Viewed as function of T
at fixed N,
$$\lambda = \sqrt{2\pi h^2/m \, k_B T}$$
,
 $\lambda^3 \, \Omega_X = \int 3/2$
 $(2\pi h^2 \over m \, k_B T)^{3/2} = \int 3/2$
 $(2\pi h^2 \over m \, k_B T)^{3/2} = \int 3/2$
 $K_B T_2 = (\frac{N}{V} \int 3/2)^{2/3} \frac{h^2}{K_B M}$
 $T_c = 3.31 (\frac{N}{V})^{2/3} \frac{h^2}{K_B M}$
For $T \leq T_c$, $\frac{N_{ex}}{N} = \int 3/2 \cdot \frac{V}{N} \frac{1}{\lambda^3} \propto \left(\frac{T}{T_c}\right)^{3/2}$
 $\frac{Nex}{N} = \left(\frac{T}{T_c}\right)^{3/2}$

$$\frac{N_{ex}}{N} = \left(\frac{T}{T_c}\right)^{3/2}$$

$$\frac{N_o}{N} = \left(-\frac{T}{T_c}\right)^{3/2}$$

$$\int_{-\frac{N_o}{N}}^{N_o} \frac{n_*}{T_c}$$



Weimann + Cornell, JILA: Te=170nkl

Because
$$\mathcal{N}$$
 is independent of N for
 $T < T_c$, we can obtain $P = \frac{\partial \Omega}{\partial V}$ easily
in the grand-canonical formalism,
 $\beta P = -\int \frac{d^3 K}{(2\pi)^3} \ln (1 - e^{-\beta(4\pi/V)}) = \frac{1}{\lambda^3} \frac{4}{3\pi} \int \frac{d \times x^{3/2}}{z' e^{x} - 1}$
 $\beta P(\mathcal{V}=0) = \frac{1}{\lambda^3} \int \frac{1}{5^{5/2}} = 1.341 / \lambda^3 \qquad [T < T_c]$
So P depends only on T , not $\frac{N}{V}$!
Very different than $P = \frac{N}{V}$ KBT:
only nex contributes since the no arcstill
 $\alpha_{nd} P = 0$ for the capacity,

