

Universality: Same Behavior up to Change in Coordinates $A(M,T) = a_1 M + a_2 + a_3 T + (other singular terms)$ Nonanalytic behavior at critical point (not parabolic top) All power-law singularities (χ , c_{ν} , ξ) are shared by magnets, liquid/gas Fluctuations and the Ginzburg Criteria Thus far we assumed the possibility of a Taylor expansion for the effective Heff(ϕ) = $E^{\circ} + \alpha \phi + A \phi^{\circ} + D \phi^{3} + \cdots$ This assumption alone led to the "mean field" $A_{1}/3, \delta, \delta$ which are a bit off from experiment. Interestingly, there is way to predict this failure within a generalization of Landau paradigm.

So far our order parameter was single # Ø. Let's instead keep track of $\emptyset(\vec{X})$: $\psi(\vec{X})$

However, we don't want to keep track of <u>every</u> spin or we're back where we started! Instead, we define a "coarse grained" ("blocked" / "smoothed") $\vec{\varphi}(\vec{x})$, There are different concrete ways, for example

$$\phi(\vec{x}:\{\sigma_{3}\}) \equiv \sum_{i} \sigma_{i} w(\vec{x} - \vec{x}_{i})$$

$$\int d^{p}w = l \quad w = \underbrace{width}_{width} \underbrace{\sqrt{-1}}_{width}$$

Note that by construction & varies slowly over scale "a" (the "UN cotoff" Now we obtain an Heff functional

$$e^{-\beta} \operatorname{Hetf}[\phi(x)] = \sum_{\sigma} e^{-\beta} \operatorname{Hetf}[\sigma] \operatorname{Tr} S(\phi(x) - \phi(x); \{\sigma_{S}\})$$
This would be terrible to compute
concretely! But we can proceed pheno-
menologically by using "gradient" expansion,
 $\beta \operatorname{Heff}[\phi(x)] = \int d^{p}x \left[h \cdot \phi(x) + \frac{\alpha}{2} \phi^{2}(x) + \frac{\omega}{4} \phi^{4}(x) + \frac{\kappa}{2} (\nabla \phi)^{2} + S \cdot \phi^{2} +$

The exact relation between h, Q, U, ... and the coefficients in H are usually difficult to determine

Obviously we can keep going. But
since
$$\emptyset$$
 waries also why over \emptyset ,
 $\nabla \beta \nabla \beta \Lambda$. So leading in \emptyset , χ : A-
Heff = $\int d^{\circ}x \left[\frac{\alpha}{2} \phi^{2}(x) + \frac{\kappa}{2} (\nabla \beta)^{2} + \frac{U}{4} \phi^{4}(x) + \cdots\right]$
Of course to compute Z, we have
 $Z = \int D[\beta] e^{-\beta T} Heff[\phi(x)]$
where $\int D[\phi] = \prod \int d\phi(x) : \alpha$
U path / field " integral. Many D.O.F,
just Dike $\Xi \sigma \Im$. However, near
the. C.P. \emptyset is small, so we
can try one further approximation:
assume $\beta^{4} \ll \phi^{2}$, and (for now) Q>O.
We'll need to test afterd wards if
this approximation is justified.
So, lets study stat-mech of
Heff = $\frac{1}{2} \int [\alpha \beta^{2}(x) + \kappa (\nabla \beta)^{2}]$
" The Gaussian Point"

It can be solved by Fourier transformation + Gaussian integration: $\phi(q) = \frac{1}{\sqrt{1/2}} \int e^{-iq^{\chi}} \phi(x) d^{D}\chi$ -> -19 $Heff = \frac{1}{2} \sum_{q} \left[\left(a + k q^2 \right) \phi(q) \phi(-q) \right]$ Since $\phi(q) = \phi^*(-q)$, we group together contribution from q,-q, $F = -\frac{1}{3}\ln(Z) = -\frac{1}{23}\sum_{q}\ln\left(\int d\phi_{q} e^{-\beta E_{q} |\phi_{q}|^{2}}\right)$ where $\phi_q \in \mathbb{C}$, $\epsilon_q = a + k q^2$ For Z=X+iy, recall Jardy e - e | ZI = TE So $F = -\frac{1}{2\beta} \sum_{\beta} \ln\left(\frac{\pi}{\epsilon_{\beta}\beta}\right)$ $= -\frac{k_BT}{2}\sum_{q_i} \ln\left(\frac{\pi k_BT}{\epsilon_{q_i}}\right)$

Correlation Functions

Let's use F to compute $C(r) = \langle \phi(r) \phi(0) \rangle$, which will quantify the distance over which spins align. By F.T,

$$C(r) = \frac{1}{V} \sum_{q,q'} e^{iqr} \langle \phi(q) \phi(q') \rangle$$

For $-q \neq q'$, $\langle \phi(q) \phi(q') \rangle = 0$,

by translation invariance. Otherwise,

$$(\phi(q)\phi(-q)) = \partial \epsilon_q F = \frac{1}{\beta} \frac{1}{\epsilon_q}$$

= $\frac{1}{\beta} \frac{1}{\alpha + \kappa_q^2}$

So
$$C(r) = \frac{1}{B \cdot V} \sum_{q} \frac{e^{iqr}}{a + kq^2}$$

$$V \rightarrow \infty$$
 $C(r) \simeq \frac{1}{3} \int \frac{d^2q}{(2\pi)^2} \frac{e^{iqr}}{a + 7kq^2}$

$$\beta C(r) = \int \frac{d^{p}q}{(2\pi)^{p}} \frac{e^{iqr}}{a + \chi q^{7}}$$

$$= \frac{i}{\chi} \int \frac{d^{p}q}{(2\pi)^{p}} \frac{e^{iqr}}{g^{2} + q^{2}}, \quad g = \sqrt{\frac{\chi}{a}}$$
"correlation length"
$$If \quad g = \infty, \quad this \quad gives \quad D - dim \quad Coulomb:$$

$$\beta C(r) \quad \alpha \stackrel{i}{\chi} \stackrel{i}{r} \stackrel{r}{r^{D-2}}$$

Spins are power-law correlated
out to infinite distance! Otherwise,
$$\beta C(r) = \frac{g^{2-D}}{R} \int \frac{d^{D}q}{(2\pi)^{D}} \frac{e^{i\frac{q}{2}} \frac{r}{g}}{1+q^{2}}$$

This is D-dimensional "Yukawa potential"
Since the integrand is analytic in the
strip $|\text{Im}(q)| \le 1$, it's Fourier transform
decays exponentially at large r. For
 $3D$, $\beta C(r) = \frac{1}{4\pi R} \frac{e^{-\Gamma/g}}{r}$

This is why g is correlation length? In general, as $r \rightarrow \infty$ for fixed g, $C(r) \propto \frac{e^{-r/g}}{r^{(d-1)/2}}$ (Arovas 7.205)

So the picture is for $T > T_c$, system is organized into domains of size -S. Since $S = \sqrt{\frac{\pi}{a}}$, if we take $a = \alpha \frac{T - T_c}{T_c} = \alpha \cdot t$ $S \propto t^{-\gamma}$, $\gamma = \frac{1}{2}$

As T->Tc, g->00 and domain sizes are power-law distributed.

Now let's compute
$$C = -T \partial_T^2 F$$

 $F = -\frac{k_BT}{2} \sum_{ij} ln(\frac{\pi k_BT}{\epsilon_{ij}}) - \partial_t F$
At this point, we must remember
 $\epsilon_{ij} = a(T) + k(T) \partial_t^2$ itself depends
on $T!$ Letting $a(T) = k \cdot \frac{T - T_e}{T} F$
 $S = -\partial_+ F = \frac{k_B}{2} \sum_{ij} \left[ln(\frac{\pi k_BT}{\epsilon_{ij}}) + l - \frac{\alpha/T_e}{\epsilon_{ij}} \right]$
 $T \partial_T S = \frac{k_BT}{2} \sum_{ij} \left[\frac{1}{T} - \frac{\alpha/T_e}{\epsilon_{ij}} + \frac{(\alpha/T_e)^2}{\epsilon_{ij}^2} \right]$
 $\frac{\epsilon_{ij}^2 - T \frac{\alpha}{T_e} \epsilon_{ij} + (k/T_e)^2 \cdot T}{\epsilon_{ij}^2 - T \frac{\alpha}{T_e} \epsilon_{ij}} \frac{(k - \eta^2 K)^2}{\epsilon_{ij}^2 - \tau_{ij}^2} \frac{(k - \eta^2 K)^2}{\epsilon_{ij}^2 - \tau_{ij}^2}$
Now converting to $V \to \infty$

$$\frac{C}{V} = \frac{K_B}{2} \int \frac{d^2q}{(2\pi)^D} \frac{(\kappa - q^2 \lambda^2)^2}{(\kappa t + q^2 \lambda)^2}$$

v

The interpretation of this is
a bit subtle, because the integral
may not converge for two distinct
reasons: UV (
$$q \rightarrow \infty$$
) and IR ($q \rightarrow 0$)
In fact, for $q \rightarrow \infty$ the integrand goes
as
 $\frac{C}{V} \ni \frac{KB}{2} \int \frac{d^2q}{(2\pi)^2} \cdot 1 = \infty$
 $\beta(x)$ was a field that varied slowly
over A^{-1} which means $\beta(q) \rightarrow 0$
for $qA \gg 1$. For example, with
Gaussian coarse-graining $\phi(q) \sim e^{-\frac{q}{2}/4/2}$
But in our Gaussian model,
 $\zeta \phi(q) \phi(-q_1) = \frac{1}{\beta} \frac{1}{\alpha + \kappa q^2}$

which is much slower decay. In our Heff, the fix really comes from higher-order $\beta \nabla^{4} \phi$, etc., which kill large-q fluctuations. However, we can proceed phenomenologically

by intead implementing a "hard" evtoff 191< A they,

$$\frac{C}{V} = \frac{K_B}{2} \int \frac{d^2q}{(2\pi)^D} \frac{(\alpha - q^2 \lambda^2)^2}{(\alpha + q^2 \lambda)^2}$$

Results which depend on A are sensitive to the details at scale-a; but we will find some results are <u>not</u> dependent on A.

$$\frac{C}{V} \ni \frac{K_{B}}{2} \int_{0}^{\sqrt{2}} \frac{dq q^{D-1}}{(2\pi)^{D}} \frac{d^{2}}{(\alpha t + q^{2} R)^{2}} \sim \int dq q^{D-5}$$

$$= \frac{k_{B}\alpha^{2}}{2k^{2}(2\pi)^{0}} \int dq \frac{q^{D-1}}{(z^{-2}+q^{2})^{2}} \frac{\xi}{\xi} = \alpha t$$

$$= \frac{K_{B}\alpha^{2}}{2\pi^{2}} \frac{S_{D-1}}{(2\pi)^{D}} \xi^{4-D} \int_{0}^{\xi^{A}} \frac{d\overline{q} q^{D-1}}{(1+\overline{q}^{2})^{2}}$$

So
$$\frac{C/KB}{(V/a^{2})} \propto R^{+} a^{2} g^{4-D} \int_{0}^{S^{A}} \frac{d\overline{q} q^{D-1}}{(1+\overline{q}^{2})^{2}}$$

 $R_{*} = \sqrt{\frac{K}{a}} = g(t=1)$, $\Lambda = 1/a$
Now let's estimate

$$\lim_{q \to \infty} \int_{0}^{q \to \infty} \frac{d\overline{q}}{(1+\overline{q}^{2})^{2}}$$

This can be done exactly, but the <u>scaling</u> comes from

$$\int_{0}^{5\Lambda} d\overline{q} \quad \overline{q}^{D-1-4} \sim \begin{cases} (5\Lambda)^{D-4}, \quad D>4\\ \ln(5\Lambda), \quad D=4\\ \cosh +, \quad D<4 \end{cases}$$

So
$$\frac{C/\kappa_B}{(v/a^p)} \propto \left(\frac{\alpha}{R_{\star}}\right)^4 \begin{cases} \text{const} D>4\\ \ln(3/\alpha) D=4\\ (3/\alpha)^{4-D} D<4 \end{cases}$$

$$\frac{C/K_{B}}{(V/a^{p})} \propto \left(\frac{a}{R_{\star}}\right)^{4} \begin{cases} \text{const} D>4\\ \ln(3/a) D=4\\ (3/a)^{4-D} D<4 \end{cases}$$

So, for $D \le 4$, there is a <u>singular</u> contribution to the heat capacity as $\frac{\xi}{R*} \sim \frac{1}{\sqrt{t}} \rightarrow \infty^{1}$. This means the fluctuations are important to the thermodynamics for $D \le 4$. Indeed, MF Landau treatment predict $C \sim t^{\circ}$ ($\alpha = 0$) vs $C \sim t^{(4-D)/2}$ ($\alpha = (4-D)/2$)

The fluctuation correction is O(1)when $I = \left(\frac{a}{R_{\star}}\right)^{4} \left(\frac{s}{a}\right)^{4-D} = \left(\frac{s}{R_{\star}}\right)^{4-D} \left(\frac{a}{R_{\star}}\right)^{p}$ Using $\frac{s}{R_{\star}} = \frac{1}{V_{t}}$ $t_{g} = \left(\frac{a}{R_{\star}}\right)^{\frac{2D}{4-D}}$

"Ginsburg Temp"
$$t_6 = \left(\frac{a}{R_*}\right)^{\frac{2D}{4-D}}$$

 $R_* = \xi(t=1)$

For $t > t_c$, the fluctuating contribution to C is small, and MFT is ok; but for $t < t_c$, $D \leq 4$, the fluctuating contribution is important and MFT is corrected.