Landau Theory

Latent Heat is useful! H2O melting: $334,000$ J/kg = 40 $\boldsymbol{\beta}$ FECATE Beer phase $\frac{1}{\sqrt{\pi}}$ Erce phase Water phase

Liquid \rightarrow steam: 2.2 10^6 J/Kg = 6Q

 Cau also show SSIS (Tare but, maybe, Ex : Potts model $w/q > 4$ $i^{\prime\prime}$ s not really $\frac{spat^2}{T_c}$ There must to gu $\frac{epat^2}{\sqrt{epat^2}}$ Discontinuous change in order parm. c_9 ut.

no continuous crítical point observed; "forbidden" can be related to grouptheoretic considerations, e.g. $S62 \nsubseteq S61$

<u>Order parameters</u> Symmetry breaking always implies. a ymmetiy breaking always implies.
phase transition. If g $\hat{H}g' = H$ for ľ ϵ G (e.g $\tau \Longleftrightarrow \tau$ for $H = \Sigma \tau_i \sigma_j$) and " ϕ'' is an observable with $g \phi g^{-1} \neq \phi$, we call ϕ an "order parameter⁴ for g. Ex:

The cubic crystal has various symmetries including $M_{x/y}$ and C_y (Rgoo)

However in (say) BaTiO3, above some Tc , the Ti displace by $\vec{\phi} = C \phi_{\times}$, ϕ_{γ}

Since $R_{10^{\circ}}:(\phi_{\kappa_1}, \phi_{\gamma}) \longrightarrow (-\phi_{\gamma_1}, \phi_{\gamma}) \neq \overrightarrow{\phi}_1$ ϕ is "order parameter" for R90

Formally , order parameters carry an $\ddot{}$ irreducible representation" Cirreq) of the symmetry group .

 $If $\phi > \pm 0$, the symmetry is$ $(spon taneously)$ broken. So $<\!\!\phi\!\!>=o$ vs τ ϕ > \neq 0 is sharp distinction which must be seperated by phase transition: ay-Different symmetries " ه
< م is sharp distinction
separated by pr
pifference of the pifference

Landau theory is a <u>phenomenologica</u>l framework for deriving when its possible to have direct, continuous transitions between different orders (and there are some " beyond Landau " exceptions). + neighborhood of continuous transitions. \mathcal{L} $\overline{\mathcal{L}}$

<u>The "effective" Hamiltonian/Free energy</u> Suppose we have identified an order parameter/s { ϕ ; }, e.g., $\phi = \frac{1}{N} \sum_{i=1}^{N} \sigma_i$. How do we understand transition? Of course if we can compute

< ϕ > = $\frac{1}{z}$ $\sum_{\mu} e^{-\beta H(\mu)} \phi(\mu)$, we're good, but that's usually hard! Landau introduced idea of "effective" Heff (¢). Key is trivial identity: $\left(\begin{array}{cc} d\phi & \delta(\phi - \times) = 0 \end{array}\right)$ We can write $e^{-\beta F} = \sum_{\mu} e^{-\beta H[\mu]} = \int d\Phi \sum_{\mu} e^{-\beta H[\mu]} \delta(\Phi - \phi(\mu))$ $e^{-\beta F} = \int d\Phi e^{-\beta \cdot V \cdot \text{Heff}(\Phi, \beta)} = e^{-\beta \cdot V \cdot \text{Heff}(\Phi, \beta)}$ $\langle \phi \rangle = \frac{\int d\Phi \ e^{-\beta \cdot V \cdot \text{Heff}(\Phi, \beta)}}{\left(d\Phi \ e^{-\beta \cdot V \cdot \text{Heff}(\Phi, \beta)}\right)}$

As
$$
V \rightarrow \infty
$$
, dominate d by max
\n $\partial \Phi$ Heff(Φ , β) = 0
\n π he solution then gives $\langle \phi \rangle$ and
\n $\frac{F}{V} = Heff(\phi, \beta)$

So, if we could compute $Herf(\Phi,\beta),$ we could calculate any property - ϕ , β , \vdash , Cv, S etc from one variable stat - mech ! Of course we've just swept problem under the rug:

$$
e^{-\beta \cdot V \cdot \text{Heff} (\Phi_{\text{A}})} = \sum_{\mu} e^{-\beta \text{H}[\mu]} \delta (\Phi - \phi(\mu))
$$

is hard to compute. Here's where we go phenol. Near ^a (continuous) phase transition, ϕ is small: 。
个 ase transition, φ is small
So expand
 S_0 expand
 $\bigcup_{\gamma,\mu,\nu}$ s $\frac{1}{2}$ look

W	Part 2nd			
Heff = H ₀ + α	ϕ + A ϕ ² + C ϕ ³ + B ϕ ⁴ + ...			
W	Here	H ₀	α	A etc. depend on T,V, Netc.

If there are multiple order parameters, i , nere are multiple order para!
then $\sum_i \alpha_i \cdot \phi_i +$ Aij $\phi_i \phi_j +$ etc.

 $Since$ $H[g\cdot \mu]=H[\mu]$ for ge6, we know

Heff (g.
$$
\Phi
$$
, T, N, V) = Heff(Φ , T, N, V)

\nThis constraints the expansion. In particular, since $g \Phi \neq \Phi$ for some $g \in G$ (order parameter)

$$
Heff = H_0 + A \phi^2 + C \phi^3 + B \phi^4 + \cdots
$$

In general, Aijøi·øj (etc) can only have $Aij \neq 0$ if decomposing the tensor product $\phi \otimes \phi = \Gamma$, $\vdash \Gamma_2$, ... contains irrep $I = 1$ (trivia)). This is just complicated way of saying Heff is symmetric under G.

Ising $Example: q(\sigma) = -\sigma$ $q^2=1$ $G = \mathbb{Z}_{2}$ $\phi = \frac{1}{N} \sum \sigma_i$, $q(\phi) = -\phi$ So ϕ^3 is forbidden: $Here(C_{\beta}) = H_{0} + A \phi^{2} + B \phi^{4} + \cdots$ Let's assume (for now) $B>0$, so $D\phi^6$ won't be important. Two cases:

$$
\phi = \pm \sqrt{\frac{|A|}{2 B}} \quad \text{for } A < 0
$$

The critical point is $A=O$, so we can expand $A = \alpha_{o} (T - T_{c}) + \alpha_{1} (T - T_{c})^{2}$ To leading T-Te , $<\phi$) = $\pm \sqrt{\frac{\alpha_{0}T-T_{c}T_{c}}{2B}} \propto \pm 1T^{-1}$ To for $T < T_c$ $\phi \curvearrowleft$ Predicts critical exponent Predicts critica
 $\frac{m}{s} = 1/2$ " We can then compute F : $F(T) = F_{o}(T) + A \phi^{2}$ = $F_o(\tau) + A \phi^2$
= $\begin{cases} F_o(\tau) - \frac{1}{2} \end{cases}$ $\frac{\alpha_o^2 (T-T_c)}{4 B} + \cdots , \qquad T < T_c$ $\left\{\n\begin{array}{c}\n\text{F}_0(T) \\
\text{F}_0(T)\n\end{array}\n\right.$ $T > T_c$ F_{0} (T) = f_{0} + (T-Tc) \cdot f. + - - . is " smooth " across transition, $\phi v + A\phi^2 + B\phi^4$ gives kink

$$
S = -\frac{\partial F}{\partial T} = \begin{cases} S_{o}(t) + \frac{\alpha_{o}^{2} (T - T_{c})}{2 B} + \cdots, T < T_{c} \\ S_{o}(t) + \cdots, T > T_{c} \end{cases}
$$

$$
C = T \frac{\partial S}{\partial T} = \begin{cases} C_{o}(T) + T \frac{\alpha_{o}^{2}}{2 B} \\ C_{o}(T) \end{cases}
$$

So heat capacity (but not F, S, \emptyset) jumps:

Field Dependence $H[\mu] \rightarrow H(\mu) - h \cdot \Sigma \sigma_i$, then 工ト we exactly have

Heff = Ho - h ϕ + A ϕ^2 + B ϕ^4 + ... We can then use same analysis near Tc!

$$
h = 2 \alpha_0 (T-T_c) \phi + 4 B \phi^3
$$

We now have $\phi \neq 0$ for any $\boxed{t = \tau - \tau_c}$. transition is "rounded out". The width of the rounding (in t) is

$$
\alpha_{o} t \phi^{2} \sim h \phi
$$

$$
\phi t \sim \frac{h}{\phi_{o}}
$$

 $With \notin \sim \sqrt{\alpha_{0} t/2B}$ ($h=0$ result) Width of h-induced rounding:
Iat ~ h^{2/3} B^{1/3}/x.

$$
h = 2 \alpha. t \phi + 4 B \phi^{3}
$$

For $t \ge 0$, to leading order

$$
\phi = \frac{h}{2 \alpha. t} \Rightarrow \chi_{\vert_{h=0}} = \frac{1}{2 \alpha. t}
$$

Piverges as 1/t.
For $t \le 0$:

$$
\phi = \left(\frac{h}{4B}\right)^{1/3} \quad \text{``} \quad s = 3
$$
'
for $t \le 0$:

$$
\begin{cases} \frac{h}{4B} & \text{``} \quad s = 3 \end{cases}
$$
'

 $\cancel{\beta}$ $For \t<0$ $\sqrt{1+t^{1/2}}$ \overline{h} $\mathbf{1}$ $\ddot{}$

However, we can calculate
\n
$$
\chi(\tau, h) = \partial h \phi
$$
 at $h = 0 \pm \epsilon$;
\nFrom $h = 2 a_0 \pm \phi + 4 B \phi^3$, we
\n $\phi = \sqrt{\frac{\alpha_0 \pm}{2B}} + \delta \phi$
\n $\Rightarrow h = 2 \kappa_0 \pm \delta \phi + 12B \delta \phi \left(\frac{\alpha_0 \pm}{2B}\right) + G(\delta \phi^2)$
\n $\delta \phi = \frac{h}{4 \kappa_0 \cdot t} \approx t^3$

Summary of "Exponents"
\n- "Heot capacity exponent"
$$
[\alpha]
$$

\n $C \sim \begin{cases} A_t & t^{-\alpha} & t > 0 \\ A_- & (t)^{-\alpha} & t < 0 \end{cases}$

\nand

-
$$
''
$$
 Isotherm exponent t'' $\boxed{8}$

$$
\langle \phi \rangle
$$
 (t=0, h) \propto sgn(h)-|h|^{1/8} $\xi = 3$

As predicted, $\langle \phi \rangle \sim t^{-\beta}$ is a perfect power law near to. But β = 0.32 vs prediction β = 0.5 !

Remarkably, <u>all</u> 3D magnets with Ising-like order parameter are found to have the same exponents to within ^a couple digits :

This surprising "universality" is $s\circ b$ ject of $H1212$.

Universality: Shared Critical Behavior Ising Model and Liquid-Gas Critical Point

Universality: Same Behavior up to Change in Coordinates $A(M,T) = a_1 M + a_2 + a_3 T + (other singular terms)$ Nonanalytic behavior at critical point (not parabolic top) All power-law singularities (χ, c, ξ) are shared by magnets, liquid/gas

Non-symmetric Models: β^3 $\left(\right)$

The Ising symmetry allowed us to eliminate odd terms in Heft, but that doesn't mean the formalism can 't be applied more generally . Recall the liquid-gas transition : P P liquid $"C.P.''$ lst order
S n Ising symmetry allower

eliminate odd terms in Her

+ doesn't mean the formali

2 applied more generally Rec

vid-gas transition.

1.14vid 1.25 (1.14 order

1.34 (1.14 order)

1.14vid 1.25 (1.14 order)

1.14vid 1.25 (1.14)
T $\stackrel{\sim}{\sim}$ τ

Across the transition, the density \mathfrak{g} r) jumps. This suggests we consider

$$
e^{-\beta V \text{ Heff} (n)} \equiv \sum_{\mu} e^{-\beta H(\mu)} \delta(n-n(\mu))
$$

Now ⁿ is not small , so we can't immediately Taylor expand $\begin{array}{ccc} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{array}$ h = n_{c.p.} + Sn, $rac{sin}{n}$ < ' , SO

$$
Heff [Sn] = E^* r \alpha_1 Sn + \alpha_2 Sn^2 + \alpha_3 Sn^3 + \alpha_4 sn^4...
$$

with $Q_i(P, T)$, and $\alpha_1, \alpha_3 \neq 0$

Now let's make one more shift . For each P, T , we can shift by $\delta n^* (P, T)$ $\delta n = [\phi + \delta \hbar^*(P,T)] \cdot \int_{0}^{WH} \int P_{\sigma}^{DSE, bP}$ chosen such that $\alpha_3 \rightarrow 0$: $Heff[\phi]=E^* + h(P,T)\phi + A(P,T)\phi^2 + B(P,T)\phi^4$ However, we can't get rid of ^h . $A(P,T)$, $h(P,T)$ vary smoothly in P,T, so they are like "change of coordinate" from $P_f T \longrightarrow A_f h$ space:

 $\begin{array}{ccc} h^{2} & \ & \ & \ \end{array}$ In terms of ϕ_1 $h, A,$ now no different than Ising : system which lead to phase transition

 $\frac{1}{\sqrt{1-x}}$ \bigvee_{ϕ} , $\qquad \searrow$.

However, this is first order. The continuous critical point occurs only at special $A = h = 0 \iff (T_{*}, P_{*})$

This illustrates general principle in Landau theory . ^A critical transition requires <u>both</u> A=h=0, so we need to control two knobs (P,T) to "tune" to this point. So <u>generically</u> transition is 1st order. With symmetry , however, h=0 " for free" , so only need ^I knob. (T) → generically continuous .